
Analysis of GS protections in

Microsoft® Windows Vista™

Ollie Whitehouse, Architect,
Symantec Advanced Threat Research

S
Y

M
A

N
T

E
C

A
D

V
A

N
C

E
D

T
H

R
E

A
T

R
E

S
E

A
R

C
H

Contents

Introduction .4

Prior research .4

Organization .4

The Buffer Security Check options .5

GS overview .5

Measuring GS protections in Windows Vista .7

Identifying candidate binaries .7

Detecting GS protection in Visual Studio 2003 .8

Detecting GS protection in Visual Studio 2005 .9

Counting protected functions .10

Kernel drivers .10

Analysis .12

GS master cookie values .12

GS master cookie locations .12

Binaries without GS code .13

Future research .15

Conclusions .15

Acknowledgments .16

References .16

Appendix I. GSAudit Results .17

Appendix II. Location of __security_cookie (Without Reboots) .18

Appendix III. Location of __security_cookie (With Reboots) .20

Appendix IV. Table of Binaries Without GS Code from Windows Vista 32-bit RTM21

Symantec Advanced Threat Research

Analysis of GS protections in

Microsoft Windows Vista

An Analysis of Address Space Layout Randomization on Windows Vista

4

Abstract: The Microsoft Visual Studio® compiler supports a Buffer Security Check (GS) option to

protect stack variables from overflows that result in arbitrary code execution. We developed

techniques to identify the presence of GS protection in binaries and used them to identify which

programs are and which programs are not protected by the GS option in the 32-bit RTM release

of Windows Vista. We also measured the randomness of the GS cookies and the effect of Address

Space Layout Randomization (ASLR) on the placement of the master cookie.

Introduction

The Visual Studio C++ compiler supports a Buffer Security Check option, known by its flag name, “GS.”

This option causes the compiler to add checks that protect the integrity of the return address and other

important stack metadata associated with procedure invocation. The “GS” protections do not eliminate

vulnerabilities, but rather make it more difficult for an attacker to exploit vulnerabilities.

We developed techniques to detect the presence of GS protections in binaries compiled with Visual Studio

2003 (VS2003) and Visual Studio 2005 (VS2005). We encountered several challenges when implementing

GS detections, and this paper outlines our solutions to these challenges. We then used these techniques to

analyze the binaries of a stock 32-bit RTM release of Microsoft Windows Vista. We found that most binaries

were compiled with GS protections and were able to point out some binaries in the default installation that

are not GS-protected. Finally, we measured the effects of Address Space Layout Randomization (ASLR) on

the placement of the GS master cookie and measured the randomness of cookie values.

Prior research

There have been several papers describing buffer security checks and outlining attacks against them. One

significant paper of note is Litchfield’s paper on attacks against the Buffer Security Check implemented

by Visual Studio 2003 [9]. Techniques for identifying segments of code within a binary have also been

discussed previously, notably the FLIRT techniques used by DataRescue in their IDA disassembler [7].

To our knowledge, our work is the first to identify Buffer Security Checks in compiled binaries or to build

a list of unprotected binaries in the Windows Vista RTM release.

Organization

The remainder of this paper is organized as follows: The next section provides an overview of the Buffer

Security Check option as implemented in Visual Studio 2003 and 2005. The section titled “Measuring GS

protections in Windows Vista” describes our techniques for identifying GS protections. The “Analysis”

section presents our analysis of Windows Vista binaries using techniques presented in the previous

section. The closing sections present our future goals and conclusions.

An Analysis of Address Space Layout Randomization on Windows Vista

5

The Buffer Security Check options

GS overview

The Buffer Security Check option, known by its flag name “GS,” is used to mitigate buffer overflow

vulnerabilities in C and C++ code that allow an attacker to overwrite important stack data and seize control

of the program. The primary goal of GS protection is to detect corruption of a function’s return address

that is stored on the stack and abort execution if corruption is detected. The GS feature also provides some

other protections by careful layout of stack data.

The GS option was introduced in Visual Studio 2002 [14] and has undergone several revisions since then.

The Windows Vista system was built primarily with Visual Studio 2003 (VS2003) and Visual Studio 2005

(VS2005), and we restrict our discussion to these versions.

The Visual Studio GS option works by placing a distinguished value, known as a cookie, onto the stack

during the start of each function. A cookie value is copied from a program-wide master cookie and placed

on the stack in between the function’s return address and any space allocated for local variables. Because

buffer overruns overwrite a contiguous range of memory, and because the cookie value is chosen to be

unpredictable, it is assumed that if the cookie value has not been modified, a buffer overflow has not

corrupted any data past the cookie, such as the return address. The cookie value on the stack is checked

against the original master cookie at the end of the function before the function returns to ensure that it

has not been overwritten either in a malicious manner or by accident. If the cookie is found to have been

modified, the program is terminated. The code to place and check the cookie is integrated into the

prologue and epilogue of each protected function during compilation.

The master cookie value that is copied onto the stack in the prologue and compared against in the

epilogue is a global value initialized by the C runtime (CRT). While the program is starting up, the

__security_init_cookie function is called to initialize the master cookie value and store its value

in the __security_cookie variable [12].

There is a cost involved in implementing the GS feature. Additional code is added to every protected

function, and additional stack storage is used to store cookie values. For this and other reasons, GS

protection is not necessarily applied to all functions even if the GS option has been selected. A function

will not be protected with GS protections if any of the following hold true:

• The optimization (O) option is not enabled

• The function does not contain a stack buffer

• The function is marked with naked in C++.

• The function has a variable argument list (“…”)

• The function begins with inline assembly code

• The compiler determines that the function’s variables are used only in ways that are less

likely to be exploitable

Because of these restrictions, the GS option does not always protect vulnerable code. We identified one

additional restriction not mentioned in the Microsoft documentation: Functions are only protected if they

have a buffer of 5 bytes or more. Figure 1 shows an example of a vulnerable C program that will not be

protected by the GS option. The function vulnerable has a vulnerability allowing writes past the end of the

foo buffer. Because the buffer is only 4 bytes long, GS protections are not applied.

An Analysis of Address Space Layout Randomization on Windows Vista

6

Figure 1. Example code with a buffer that will not be protected by the GS option

The stack frame layout used by VS2003 is shown in the left-hand side of Figure 2. In this figure, smaller

addresses are lower, larger addresses are higher, and the stack grows downwards while buffers extend

upwards. The placement of the cookie protects the frame pointer and return address from buffer overflows

in any of the locals. This design has several weaknesses as identified in Litchfield’s paper [9]. The cookie

does not protect the exception handler frame, and unless mitigated with the /SafeSEH option, an attacker

can use the exception mechanism to execute arbitrary code. The cookie mechanism itself can also be

defeated in some situations by using an out parameter to overwrite the original __security_cookie value

with a known value.

Figure 2. Stack frame layouts used in Visual Studio 2003 (left) and 2005 (right)

Exception Handler
Frame

Callee Save
Registers

Parameters

Return Address

Frame Pointer

Cookie

Locals

Exception Handler
Frame

Vulnerable
Parameters

Safe
Parameters

Callee Save
Registers

Return Address

Frame Pointer

Cookie

Locals

#include "stdafx.h"

void vulnerable(char *input){
char foo[4];

strcpy(foo, input);
}

int _tmain(int argc, _TCHAR* argv[])
{

vulnerable(argv[1]);
return 0;

}

An Analysis of Address Space Layout Randomization on Windows Vista

7

Microsoft addressed these issues in VS2005 (code-named Whidbey), with the stack frame layout shown in

the right-hand side of Figure 2. These changes are described by Microsoft’s Bray [2]:

“The Whidbey compiler will do something to address this by identifying vulnerable arguments and

copying those arguments to memory addresses lower than the local buffers… The code of the function

then makes use of the copy of the function argument rather than the original argument. We often refer to

this as parameter shadowing… This improvement makes it more difficult to use out parameters and pass

by reference variables to circumvent the security checks architecture. For example, in VC 2002 an out

parameter that was changed by a buffer overrun to point to the __security_cookie variable would make

it possible for an attacker to get a predictable cookie value thus preventing the security check in the

function epilog from triggering.”

Measuring GS protections in Windows Vista

We developed a tool for identifying GS protections in binaries. We call our tool GSAudit, which is available

from the author on request. GSAudit identifies if a binary was compiled with GS protections or not. For

programs that are GS-protected, GSAudit identifies which version of Visual Studio was used to compile

the code. For reasons that will be discussed shortly, GSAudit also identifies how many GS checks are

performed and where in the binary these checks occur for all VS2005-compiled binaries.

Debugger symbols are not available for all binaries, so our techniques do not rely on the presence of

debugging symbols. To identify the presence of GS protections in a binary, we search for patterns present

in the function prologue and epilogues generated by the GS option as well as some auxiliary functions and

data. We use a technique similar to Data Rescue’s FLIRT technology [7]. This method identifies functions

by searching for matching machine code sequences while ignoring addresses that may have changed due

to relocation during linking.

Identifying candidate binaries

Before we began to identify which binaries contained GS protection, it was necessary to find a list of

candidate binaries. The GS option is only relevant to unmanaged C and C++ code, and we were interested

in measuring how many of these binaries were protected.

To identify binaries compiled from C and C++, we parsed the PE headers of all candidate files to determine

if the files had valid PE headers and if the program used native unmanaged code or managed code. The

method we used to identify managed code is rudimentary: Any binary with a PE header that contained the

string “MSCOREE.DLL” was considered to contain managed code. While this method is prone to false

positives, we did not notice any false positives in a manual review of our results.

One additional refinement was necessary to deal with DLLs that did not contain any code and therefore

were not eligible for GS protections: We only considered DLLs if they contained at least one executable

section. While on the whole this approach worked well, it did miss a class of binary. We discovered several

binaries that contain an executable .text section that is referenced by the COM+ runtime header, which did

not contain any executable code. Figure 3 shows the PE header for such a DLL. Analyzing the executable

section, we can see that it is small in size and does not contain executable code, as shown in Figure 4. We

manually reviewed, identified, and removed all of these binaries from our results. All of the removed

binaries had filenames ending with .ni.dll.

An Analysis of Address Space Layout Randomization on Windows Vista

8

Figure 3. Section list in the PE header of an anomalous binary

Figure 4. Section details for the anomalous binary

Detecting GS protection in Visual Studio 2003

Identifying the presence of GS protections in a binary compiled with Visual Studio 2003 is straightforward.

The epilogue of a GS-protected function generated by Visual Studio 2003 is shown in Figure 5. It checks

the validity of the stack cookie (in the ECX register) against the master cookie value (stored at L213194A8)

and, if it has been tampered, jumps to an error-handling function. The error-handling function, shown in

Figure 6, calls the __security_error_handler function in an external DLL.

Figure 5. VS2003 function epilogue with cookie comparison code

213168E7 SUB_L213168E7:
213168E7 cmp ecx,[L213194A8]
213168ED jnz L213168F0
213168EF retn
213168F0 L213168F0:
213168F0 jmp L213168B6

An Analysis of Address Space Layout Randomization on Windows Vista

9

We created a fingerprint based on the code in Figure 6 using a technique similar to FLIRT [7]. The

fingerprint matches instructions while ignoring arguments that may be altered during relocation, such

as the address in the CMP instruction. Searching binaries for code sequences that match this signature

identifies the presence of GS protections.

Figure 6. VS2003 error-handling code, which calls __security_error_handler

Detecting GS protection in Visual Studio 2005

We used similar techniques to identify GS protection in programs compiled with VS2005. Figure 7 shows

a function epilogue in a program compiled with VS2005. The epilogue code is sometimes altered during

optimization—for example, the RETN is sometimes implemented with REPL RETN—but the general

structure remains unchanged. We identified seven variations and created a fingerprint that covers each of

these cases, although one of the alternatives occasionally causes false matches. We will describe shortly

how we dealt with false matches.

Figure 7. VS2005 function epilogue with cookie comparison code

We encountered two problems when analyzing VS2005 binaries using this technique. First we noticed that

some binaries that were compiled with VS2005 without using the GS option contained some functions with

GS protections. We tracked down the source of these functions to standard libraries included with VS2005

that were compiled with GS protections. As a result, we cannot assume that a binary with GS-protected

functions was compiled with the GS option. The second problem was that many device drivers were found

to have GS code but never use GS protections. As a result, we cannot assume that a program with no GS-

protected functions was compiled without the GS option.

09204E16 SUB_L09204E16:
09204E16 cmp ecx, [L092301CC]
09204E1C jnz L09204E27
09204E1E test ecx, FFFF0000h
09204E24 jnz L09204E27
09204E26 retn

213168B6 L213168B6:
213168B6 push 00000008h
213168B8 push L213024C8
213168BD call SUB_L21316B44
213168C2 and dword ptr [ebp-04h], 00000000h
213168C6 push 00000000h
213168C8 push 00000001h
213168CA call jmp_MSVCR71.dll!

__security_error_handler
213168CF pop ecx
213168D0 pop ecx
213168D1 jmp L213168DA
213168D3 L213168D3:
213168D3 xor eax,eax
213168D5 inc eax
213168D6 retn

An Analysis of Address Space Layout Randomization on Windows Vista

10

Counting protected functions

To properly account for unprotected binaries that contain some statically linked protected functions, we

decided to measure how many functions in a binary were GS-protected as a fraction of the total number of

functions. Since the VS2003 libraries are not compiled with GS, this extra analysis was only performed for

VS2005-compiled binaries.

First we count the number of functions that use GS protection. Identification is achieved by locating an

epilogue with cookie-checking code. Successfully locating the epilogue allows us to obtain the address of

the master cookie value, __security_cookie. Once we have this address, we can find all functions that

access the security cookie searching the binary for code that loads this value, as shown in Figure 8. Since

our epilogue fingerprint can result in false matches, an additional check is done to ensure that there is at

least one such reference found. This extra check rejects the false epilogue matches mentioned previously.

Figure 8. Code to access the security cookie

Next we compute the number of functions in the target binary. This problem is more difficult, and our

solution is inexact, but we believe the measurements will still prove useful. To obtain the total number

of functions in a binary, we used IDAPython [5] to count the functions identified by the IDA Pro 5.0

disassembler [4]. We wrote a separate tool, FuncDump.py, which produces a CSV file that contains the

filename and the total number of functions. The source code is available from the author. The resulting

CSV file is parsed by our GSAudit program and integrated into its analysis.

This technique does not always definitively determine whether a binary is GS-compiled. However, the

results can still help security researchers identify binaries that may warrant further analysis. Binaries with

a large number of functions and a low number of GS checks would be the most likely candidates for

manual analysis.

Kernel drivers

We observed that some kernel drivers initialize a GS cookie (as demonstrated in Figure 9) but never use it

in their execution. Our fingerprints won’t match these binaries since they do not have any protected

functions, but the binaries are clearly compiled with the GS option. One could argue that these binaries do

not leverage GS protection in their execution. However, it is important to understand why: These drivers

use pointers and the heap during execution; they do not use local stack variables and hence do not need

GS protection.

mov eax, __security_cookie

An Analysis of Address Space Layout Randomization on Windows Vista

11

Figure 9. GS cookie initialization by kernel driver

To accommodate these drivers we created a fingerprint to match the cookie initialization code in the

_GsDriverEntry function. The fingerprint is based on the code in Figure 10. We used this fingerprint to

determine if a driver was compiled with GS protections even if no protected functions were found.

Figure 10. Sample GSDriverEntry code

00012305 _GsDriverEntry@8 proc near
00012305 mov edi, edi
00012307 push ebp
00012308 mov ebp, esp
0001230A mov eax, ___security_cookie
0001230F test eax, eax
00012311 mov ecx, 0BB40h
00012316 jz short loc_1231C
00012318 cmp eax, ecx
0001231A jnz short loc_1233F

An Analysis of Address Space Layout Randomization on Windows Vista

1 This sort of attack can be mitigated by a technique described by Litchfield [9]. The technique, which uses VirtualProtect to protect the master cookie from
being overwritten, is not currently implemented in Windows Vista.

12

Analysis

We used our GSAudit tool to measure the use of GS in Windows Vista. We identified and measured the

DLL, SYS, and EXE files in the C:\Windows directory of a fresh installation of the 32-bit Windows Vista RTM

release. We analyzed the results to determine how many of the binaries were compiled with GS protections

and how many of the functions were protected. We then performed a more detailed manual analysis on a

small, random sample of the unprotected binaries. We also measured the randomness of the GS cookies

themselves, and the placement of the master cookie in memory.

GS master cookie values

To measure the randomness of the GS master cookie, we wrote a small program that prints out the master

cookie value. We ran this program 2,340,878 times and did not notice any unexpected predictability in the

measured cookie values. An analysis of the values showed that of the 2,340,878 values collected, no value

was used more than once.

GS master cookie locations

To understand the impact of Address Space Layout Randomization (ASLR) on the location of the GS master

cookie, we created a test program, GSCan.exe, which records the address of the __security_cookie master

cookie to a CSV file. The source to this program is available from the author. We compiled the test program

with the ASLR and GS options (/dynamicbase /GS) and measured 15,000 executions on several platforms:

an AMD3200, 32-bit VMware Server 1.0.3, and Microsoft Virtual Server 2005 R2 x64. All three platforms

were running a fresh install of the 32-bit Windows Vista RTM. We observed that the GS master cookie

could be located at 1 of 255 locations in memory and the frequency distribution of locations was not

uniform. Plots of these distributions can be found in Appendix 0.

The environment with the most uniform distribution was VMware Server 1.0.1. However, the VMware

Server data exhibited a bias toward using one memory address more than any other. The address occurring

most frequently was used 114 times, while all other addresses were only used between 35 and 85 times

each. As a result, an attack using an arbitrary pointer-overwrite to target the master cookie would have a

much greater chance of success if they chose the most frequently occurring address (0.8 percent) than if

they chose an address at random (0.4 percent).1

The distributions observed when testing the AMD3200 platform and the Microsoft Virtual Server platform

were even less uniform. In both cases half of the addresses were used significantly more often than the

other half. On native hardware, 127 addresses were used between 2 and 19 times, while the other 128

addresses were used between 80 and 137 times. In the case of virtualized hardware, this resulted in 127

addresses being used between 9 and 36 times, while the other 128 addresses were used between 74 and

116 times.

An Analysis of Address Space Layout Randomization on Windows Vista

13

Our measurements indicate that the amount of entropy in the address randomization differs between

environments. However, we should point out that our ASLR measurements were made without rebooting

the system between measurements. Microsoft has said that, on each reboot, the addresses of binaries

protected with ASLR will be changed. To validate our measurements, we configured the VMware and

AMD3200 platforms to boot up, run our test case, and reboot. We used this setup to measure an additional

10,000 iterations and again observed biases towards a single (albeit different) memory address. The data

can be found in Appendix 0.

Binaries without GS code

We used our GSAudit tool to construct a list of all binaries in the Windows Vista RTM in the C:\Windows

directory that did not contain GS protections. The complete list can be found in Appendix IV.

It should be noted that Microsoft did not write all the binaries that are installed with Windows Vista. We

identified many binaries that were written by third parties or were legacy libraries from previous versions

of Windows.

Since we do not have a foolproof method for detecting whether VS2005-compiled binaries were compiled

with GS protections, we decided to perform a manual analysis of a random selection of binaries. Figure 11

summarizes the highlights of our manual analysis. We also plotted the number of GS-protected functions

against the total number of functions to see if there was a correlation. This plot is shown in Appendix 0

and shows that there is not a strong correlation.

An Analysis of Address Space Layout Randomization on Windows Vista

2 http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vclib/html/_crt__snprintf.2c_._snwprintf.asp
3 http://msdn2.microsoft.com/en-us/library/ms235384(VS.80).aspx
4 http://msdn.microsoft.com/library/default.asp?url=/library/en-us/winui/winui/windowsuserinterface/resources/strings/stringreference/stringfunctions/loadstring.asp
5 http://msdn2.microsoft.com/en-us/library/ms706768.aspx

14

Figure 11. Manual analysis results

File Analyzed Finding

rdpdr.sys
1000 functions,

30 checks

Located function PiRegStateOpenClassKey, which contains a stack-based variable of

46 bytes used in a _snwprintf operation.2 The function is GS-protected, which indicates

that the code is GS-compiled. However, it should be noted that Microsoft has deprecated

the _snwprintf3 function for the _snwprintf_s function instead. This indicates that

Microsoft is not adhering to secure development practices in all cases.

Microsoft was kind enough to supply the author with details as to why this is used. The

following is taken from the source code.

//

// Convert the binary GUID into // its corresponding unicode

// string.

// Note: _snwprintf is used in

// place of RtlStringCchPrintfW, // so as not to drag in

// ntstrsafe.lib, which would be // required for w2k

// compatibility as _vsnwprintf // is not exported by that OS.

//

wmp.dll

38,871 functions,

1,568 checks

Located function Session:_SetLockTimeoutError, which contains a stack-based variable of

198 bytes used in a _snwprintf_s operation. The function is GS-protected, which indicates

that the code is GS-compiled.

nvlddmkm.sys

8,250 functions,

2 checks

Numerous functions that perform unsafe string operations. This indicates that the code is

not GS-compiled. However, it should be noted that this driver is described as “NVIDA

Compatible Windows 2000 Miniport Drivers” and is copyrighted by NVIDA Corporation.

Wlanapi.dll

166 functions,

3 checks

No local variables discovered over 4 bytes in length. However, of note was the

AcmReasonCodeToString() function. This function calls LoadStringW(),4 which is

documented by Microsoft as being dangerous. This function is exposed to other

applications through the WLanReasonCodeToString function.5 The buffer and size are

user-supplied. The only input validation ensures that they are not NULL. If the calling

application was not GS-compiled, then this code could introduce a stack-based overflow

to the application.

MrxSmb.sys

294 functions,

4 checks

Located function MrxDaveSkipLrps, which contains a stack-based variable of 26 bytes.

The function is GS-protected; this indicates that the code is GS-compiled.

An Analysis of Address Space Layout Randomization on Windows Vista

15

Future research

Our GSAudit tool can identify binaries that are not or may not be protected by compiler GS checks.

However, this identification does not yield the most useful results. A more interesting measurement would

be a list of functions that both lack GS protection and contain local buffers. It should be possible to identify

functions that contain local buffers but do not perform GS checks by analyzing the assembly code of a

function. Automating this process would allow us to identify the binaries that have potentially exploitable

stack buffers, without the need for manual investigation. We’ve begun prototyping a tool that makes use of

debugging symbols, the IDA disassembler, and code from Bugscam [6] to identify the size of local stack

variables in functions that do not have GS protection. Since IDA can incorrectly identify local stack buffers,

our prototype currently suffers from a high number of false positives. However, the approach appears

promising, and future work will be aimed at refining the process.

Finally, it is not clear under what situations the compiler will omit GS checks. Microsoft’s documentation

states that GS is not used “if a parameter is used only in ways that are less likely to be exploitable in the

event of a buffer overrun.” [11] This statement is vague and imprecise. To better understand this, we

intend to investigate which coding styles and constructs result in code that would not be protected.

Conclusions

We’ve described the implementation of GSAudit, which can programmatically identify GS-compiled

binaries from VS2003. Although it can’t definitively detect whether a binary that was compiled with

VS2005 was built with the GS option, it can identify the number of functions that utilize GS functionality

compared with the total number of functions in the binary. This approach provides a good indication of

binaries that might not have been compiled with the GS option, significantly reducing the number of

binaries that must be manually investigated. We’ve also described ongoing efforts to improve the

usefulness of our tool and further reduce the need for manual analysis.

We analyzed the binaries provided with Windows Vista, and while most binaries were compiled with GS

protections, we were able to identify binaries that were not compiled with GS protections. Our techniques

pointed out several binaries that had few protected functions, and through manual analysis, we were

able to identify a binary that, while containing GS-protected functions, was not itself compiled with GS

protections. This provides confirmation that our technique of counting GS-protected functions is useful.

However, the amount of manual investigation required is still significant. We hope ongoing research can

address this issue.

During our analysis we observed that Address Space Layout Randomization (ASLR) does not place the

GS master cookie as randomly as it could. We observed that the amount of entropy in the address

randomization differs across platforms and is not uniform on any of the platforms we tested.

It is also clear from this research that there is no statistical link between the total number of functions

in a binary and the number of functions that use local stack variables.

An Analysis of Address Space Layout Randomization on Windows Vista

16

Acknowledgments

The author would like to acknowledge the help and support of Oliver Friedrichs, Matt Conover, and Orlando

Padillia of Symantec; and Tim Newsham. The author would also like to acknowledge Nitin Kumar Goel of

Microsoft, who reviewed this research and provided candid feedback.

References

1. B. Bray, “Compiler Security Checks In Depth,” Feb. 2002, www.codeproject.com/tips/seccheck.asp

2. B. Bray, “Security Improvements to the Whidbey C Compiler,” Nov. 2003,

http://blogs.msdn.com/branbray/archive/2003/11/11/51012.aspx

3. E. Carrera, “Introduction to IDAPython,” June 2005, http://dkbza.org/idapython_intro.html

4. DataRescue, “IDA Pro,” www.datarescue.com/idabase/index.htm

5. G. Erdelyi, “IDAPython,” http://d-dome.net/idapython

6. H. Flake, “BugScam,” http://sourceforge.net/projects/bugscam

7. I. Guilfanov, “Fast Library Identification and Recognition Technology,” 1997,

www.datarescue.com/idabase/flirt.htm

8. M. Howard, “Address Space Layout Randomization in Windows Vista,” May 2006,

http://blogs.msdn.com/michael_howard/archive/2006/05/26/608315.aspx

9. D. Litchfield, “Defeating the Stack Based Overflow Prevention Mechanism of Microsoft Windows 2003

Server,” Sept. 2003, www.ngssoftware.com/papers/defeating-w2k3-stack-protection.pdf

10. D. Litchfield, “Buffer Underruns, DEP, ASLR and Improving the Exploitation Prevention Mechanisms

(XPMs) on the Windows Platform,” Sept. 2005, www.ngssoftware.com/research/papers/xpms.pdf

11. Microsoft, “GS (Buffer Security Check),” http://msdn2.microsoft.com/en-US/library/8dbf701c.aspx

12. Microsoft, “Run-Time Library Reference—__security_init_cookie,” http://msdn2.microsoft.com/

en-us/library/ms235362(VS.80).aspx

13. Microsoft, “Microsoft Portable Execution and Common Object File Format Specification,” May 2006,

www.microsoft.com/whdc/system/platform/firmware/PECOFF.mspx

14. S. Toub, “Write Faster Code with Modern Language Features of Visual C++ 2005,” MSDN Magazine,

May 2004, http://msdn.microsoft.com/msdnmag/issues/04/05/VisualC2005/#S5

An Analysis of Address Space Layout Randomization on Windows Vista

17

Appendix I. GSAudit Results

The following scatter graph (Figure 12) shows that, in general, there is an upward trend in the number

of GS checks made in a binary when compared with the total number of function calls available. The data

included in Figure 12 only includes binaries that have less than 10,000 function calls. The result is that

14 binaries were omitted.

Figure 12. Comparison between number of GS checks and total number of functions for binaries with less than 10,000 functions

When sorted and plotted, we can see a general upward trend, with peaks at the end of each GS check

range where a binary has a large number of functions.

Figure 13. A sorted comparison between the number of GS checks and the total number of functions

Number of /GS Checks Versus Number of Functions

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

1 2 3 3 4 4 5 5 6 6 6 7 7 8 9 1
0

1
1

1
2

1
3

1
5

1
6

1
8

2
0

2
2

2
4

2
5

2
7

3
0

3
3

3
6

4
1

4
7

5
3

6
0

7
1

8
3

1
0

3

1
3

8

2
3

9

Number of /GS Checks

N
u

m
b

e
r

o
f

F
u

n
ct

io
n

s

Scatter of Functions Versus /GS Checks

0

200

400

600

800

1000

1200

1400

0 2000 4000 6000 8000 10000 12000

Number of Functions

N
u

m
b

er
 o

f
/G

S
 C

h
ec

ks

An Analysis of Address Space Layout Randomization on Windows Vista

18

Figure 13 indicates an upward trend, but no statistical relationship between the number of functions that

contain GS cookies and the total number of functions. This lack of relationship is due to the fact that there

is no statistical link between the total number of functions that leverage local stack variables and the total

number of functions in a binary.

Appendix II. Location of __security_cookie (Without Reboots)

The first graph (Figure 14) shows the location of __security_cookie on Windows Vista RTM 32bit under

Microsoft Virtual Server 2005 R2 running on Windows XP x64. This is from a run of 15,000.

Figure 14

Figure 15 shows the location of __security_cookie on Windows Vista RTM 32-bit under VMware Server

1.0.1 32-bit running on Windows XP x64. This is from a run of 15,000.

Figure 15

140

120

100

80

60

40

20

0
00021280 001F1280 003C1280 00991280 00B61280 00D31280 00F01280 010D1280 012A1280

/GS Location Usage

Address

C
o

u
n

t

140

120

100

80

60

40

20

0
00021280 001F1280 003C1280 00991280 00B61280 00D31280 00F01280 010D1280 012A1280

/GS Location Usage

Address

C
o

u
n

t

An Analysis of Address Space Layout Randomization on Windows Vista

19

Figure 16 shows the location of __security_cookie on Windows Vista RTM 32-bit under native

hardware. This is from a run of 15,000.

Figure 16

What can be seen from the above is all three have different randomness profiles. Figure 17 shows the

location of __security_cookie on Windows Vista RTM 32-bit under native hardware with a reboot

between each plot. This is from a run of 900.

Figure 17

10

9

8

7

6

5

4

3

2

1

0
00021280 001E1280 003B1280 00981280 00B51280 00D11280 00EE1280 010C1280 01291280

/GS Location Usage

Address

C
o

u
n

t

160

140

120

100

80

60

40

20

0
00021280 001F1280 003C1280 00991280 00B61280 00D31280 00F01280 010D1280 012A1280

/GS Location Usage

Address

C
o

u
n

t

An Analysis of Address Space Layout Randomization on Windows Vista

Appendix III. Location of __security_cookie (With Reboots)

Figure 18 shows the location of __security_cookie on Windows Vista RTM 32bit under VMWare Server

1.0.1 32bit running on Windows XP x64 with a reboot between each plot. This is from a run of 10,000.

Figure 18

Figure 19 shows the location of __security_cookie on Windows Vista RTM 32-bit under native

hardware with a reboot between each plot. This is from a run of 10,000.

Figure 19

110

100

90

80

70

60

30

20

10

40

50

0
00021280 001F1280 003C1280 00991280 00B61280 00D31280 00F01280 010D1280 012A1280

/GS Location Usage

Address

C
o

u
n

t

80

70

60

50

40

30

20

10

0
00021280 001F1280 003C1280 00991280 00B61280 00D31280 00F01280 010D1280 012A1280

/GS Location Usage

Address

C
o

u
n

t

20

An Analysis of Address Space Layout Randomization on Windows Vista

Appendix IV. Table of Binaries Without GS Code from Windows Vista 32-bit RTM

The following table shows the binaries from C:\Windows that were found not to contain GS code.

c:\windows\assembly\NativeImages_v2.0.50727_32\System.
EnterpriseSe#\59192aecec284fba3e9b4b6ec41a755d\Syste
m.EnterpriseServices.Wrapper.dll

c:\windows\Boot\PCAT\memtest.exe

c:\windows\Microsoft.NET\Framework\sbs_diasymreader.dll c:\windows\Microsoft.NET\Framework\sbs_iehost.dll

c:\windows\Microsoft.NET\Framework\
sbs_microsoft.jscript.dll

c:\windows\Microsoft.NET\Framework\
sbs_microsoft.vsa.vb.codedomprocessor.dll

c:\windows\Microsoft.NET\Framework\sbs_mscordbi.dll c:\windows\Microsoft.NET\Framework\sbs_mscorrc.dll

c:\windows\Microsoft.NET\Framework\sbs_mscorsec.dll c:\windows\Microsoft.NET\Framework\
sbs_system.configuration.install.dll

c:\windows\Microsoft.NET\Framework\sbs_system.data.dll c:\windows\Microsoft.NET\Framework\
sbs_system.enterpriseservices.dll

c:\windows\Microsoft.NET\Framework\sbs_VsaVb7rt.dll c:\windows\Microsoft.NET\Framework\sbs_wminet_utils.dll

c:\windows\SoftwareDistribution\Download\Install\
mpas-d.exe

c:\windows\System32\Boot\winload.exe

c:\windows\System32\Boot\winresume.exe c:\windows\System32\BOOTVID.DLL

c:\windows\System32\crtdll.dll c:\windows\System32\ctl3d32.dll

c:\windows\System32\C_ISCII.DLL c:\windows\System32\drivers\hgfs.sys

c:\windows\System32\DriverStore\FileRepository\
atiixpad.inf_e8d83e66\ati2drad.dll

c:\windows\System32\DriverStore\FileRepository\
atiixpad.inf_e8d83e66\ati2mpad.sys

c:\windows\System32\DriverStore\FileRepository\
atiixpag.inf_6b9aff66\ati2cqag.dll

c:\windows\System32\DriverStore\FileRepository\
atiixpag.inf_6b9aff66\ati2dvag.dll

c:\windows\System32\DriverStore\FileRepository\
atiixpag.inf_6b9aff66\ati3duag.dll

c:\windows\System32\DriverStore\FileRepository\
atiixpag.inf_6b9aff66\atikvmag.dll

c:\windows\System32\DriverStore\FileRepository\
atiixpag.inf_6b9aff66\ativvaxx.dll

c:\windows\System32\DriverStore\FileRepository\
hal.inf_59c500ab\halacpi.dll

c:\windows\System32\DriverStore\FileRepository\
hal.inf_59c500ab\halmacpi.dll

c:\windows\System32\DriverStore\FileRepository\
hpojscan.inf_c876c5d8\hpojwia.dll

c:\windows\System32\DriverStore\FileRepository\
ialmnt5.inf_c1262cce\ialmdd5.dll

c:\windows\System32\DriverStore\FileRepository\
ialmnt5.inf_c1262cce\ialmdev5.dll

c:\windows\System32\DriverStore\FileRepository\
ialmnt5.inf_c1262cce\ialmdnt5.dll

c:\windows\System32\DriverStore\FileRepository\
ialmnt5.inf_c1262cce\ialmnt5.sys

c:\windows\System32\DriverStore\FileRepository\
ialmnt5.inf_c1262cce\ialmrnt5.dll

c:\windows\System32\DriverStore\FileRepository\
nv4_disp.inf_73ea8d0d\nv4_disp.dll

c:\windows\System32\DriverStore\FileRepository\
nv4_disp.inf_73ea8d0d\nv4_mini.sys

c:\windows\System32\DriverStore\FileRepository\
prnlx001.inf_f13f0471\I386\LXAAFCIC.DLL

c:\windows\System32\DriverStore\FileRepository\
prnlx001.inf_f13f0471\I386\LXACFCIC.DLL

c:\windows\System32\DriverStore\FileRepository\
prnlx001.inf_f13f0471\I386\LXADFCIC.DLL

c:\windows\System32\DriverStore\FileRepository\
prnlx001.inf_f13f0471\I386\LXAEFCIC.DLL

c:\windows\System32\DriverStore\FileRepository\
prnlx001.inf_f13f0471\I386\LXCAFCIC.DLL

c:\windows\System32\DriverStore\FileRepository\
prnlx001.inf_f13f0471\I386\LXMAFCIC.DLL

c:\windows\System32\DriverStore\FileRepository\
prnlx001.inf_f13f0471\I386\LXMDFCIC.DLL

21

An Analysis of Address Space Layout Randomization on Windows Vista

c:\windows\System32\DriverStore\FileRepository\prnlx001.i
nf_f13f0471\I386\LXROFCIC.DLL

c:\windows\System32\DriverStore\FileRepository\prnlx001.i
nf_f13f0471\I386\LXSYFCIC.DLL

c:\windows\System32\DriverStore\FileRepository\ps5333nu.
inf_e0d01920\s3gNB.dll

c:\windows\System32\DriverStore\FileRepository\ps5333nu.
inf_e0d01920\s3gNBm.sys

c:\windows\System32\DriverStore\FileRepository\sisgr.inf_e
9f71680\sisgrp.sys

c:\windows\System32\DriverStore\FileRepository\sisgr.inf_e
9f71680\sisgrv.dll

c:\windows\winsxs\x86_subsystem-for-unix-based-
applications_31bf3856ad364e35_6.0.6000.16386_none_71
b195c9f3048b05\posixsscom.dll

c:\windows\System32\DriverStore\FileRepository\wdma_via.i
nf_42fdb9e8\ac97via.sys

c:\windows\System32\dxmasf.dll c:\windows\System32\expsrv.dll

c:\windows\System32\hal.dll c:\windows\System32\halacpi.dll

c:\windows\System32\halmacpi.dll c:\windows\System32\iac25_32.ax

c:\windows\System32\ir32_32.dll c:\windows\System32\ir41_32.ax

c:\windows\System32\ir41_qc.dll c:\windows\System32\ir41_qcx.dll

c:\windows\System32\ir50_32.dll c:\windows\System32\ir50_qc.dll

c:\windows\System32\ir50_qcx.dll c:\windows\System32\ivfsrc.ax

c:\windows\System32\KBDJPN.DLL c:\windows\System32\KBDKOR.DLL

c:\windows\System32\kd1394.dll c:\windows\System32\kdcom.dll

c:\windows\System32\kdusb.dll c:\windows\System32\ksuser.dll

c:\windows\System32\mfc40.dll c:\windows\System32\mfc40u.dll

c:\windows\System32\msdxm.ocx c:\windows\System32\msimg32.dll

c:\windows\System32\msvbvm60.dll c:\windows\System32\msvcrt20.dll

c:\windows\System32\panmap.dll c:\windows\System32\PSHED.DLL

c:\windows\System32\setupcl.exe c:\windows\System32\sfc.dll

c:\windows\System32\shunimpl.dll c:\windows\System32\sqlunirl.dll

c:\windows\System32\sqlwid.dll c:\windows\System32\sqlwoa.dll

c:\windows\System32\vbajet32.dll c:\windows\System32\vfpodbc.dll

c:\windows\System32\drivers\lgtosync.sys c:\windows\System32\winload.exe

c:\windows\System32\winresume.exe c:\windows\winsxs\Backup\x86_microsoft-windows-
b..environment-windows_31bf3856ad364e35_
6.0.6000.16386_none_6701d52e8fdf8d45_
winload.exe_75835076

c:\windows\winsxs\Backup\x86_microsoft-windows-
b..environment-windows_31bf3856ad364e35_
6.0.6000.16386_none_6701d52e8fdf8d45_
winresume.exe_85cd1215

c:\windows\winsxs\Backup\x86_microsoft-windows-
b..gertransport-serial_31bf3856ad364e35
_6.0.6000.16386_none_0f7ecb22afbfde41_
kdcom.dll_db5e7744

c:\windows\winsxs\Backup\x86_microsoft-windows-b..re-
memorydiagnostic_31bf3856ad364e35_6.0.6000.16386_
none_d5fe8c6e07b249ea_memtest.exe_01d80391

c:\windows\winsxs\Backup\x86_microsoft-windows-
bootvid_31bf3856ad364e35_6.0.6000.16386_none_
3642b97d89494bc7_bootvid.dll_c188118d

c:\windows\winsxs\Backup\x86_microsoft-windows-gdi-
painting_31bf3856ad364e35_6.0.6000.16386_none_
7535161f1f2100ed_msimg32.dll_2a4e0bd8

c:\windows\winsxs\Backup\x86_microsoft-windows-
pshed_31bf3856ad364e35_6.0.6000.16386_none_
59bc215430297e40_pshed.dll_f6ac239e

22

An Analysis of Address Space Layout Randomization on Windows Vista

c:\windows\winsxs\x86_microsoft-network-internet-
access_31bf3856ad364e35_6.0.6000.16386_none_
b85711c14117830d\cclitesetupui.exe

c:\windows\winsxs\x86_microsoft-windows-
b..buggertransport-usb_31bf3856ad364e35_
6.0.6000.16386_none_9b46e79f0d9c56ff\kdusb.dll

c:\windows\winsxs\x86_microsoft-windows-b..environment-
windows_31bf3856ad364e35_6.0.6000.16386_none_
6701d52e8fdf8d45\winload.exe

c:\windows\winsxs\x86_microsoft-windows-b..environment-
windows_31bf3856ad364e35_6.0.6000.16386_none_
6701d52e8fdf8d45\winresume.exe

c:\windows\winsxs\x86_microsoft-windows-b..gertransport-
serial_31bf3856ad364e35_6.0.6000.16386_none_
0f7ecb22afbfde41\kdcom.dll

c:\windows\winsxs\x86_microsoft-windows-b..re-
memorydiagnostic_31bf3856ad364e35_6.0.6000.16386_
none_d5fe8c6e07b249ea\memtest.exe

c:\windows\winsxs\x86_microsoft-windows-
b..uggertransport-1394_31bf3856ad364e35_
6.0.6000.16386_none_61949536f6f76e24\kd1394.dll

c:\windows\winsxs\x86_microsoft-windows-
bootvid_31bf3856ad364e35_6.0.6000.16386_none_
3642b97d89494bc7\BOOTVID.DLL

c:\windows\winsxs\x86_microsoft-windows-
crtdll_31bf3856ad364e35_6.0.6000.16386_none_
df9e2f858dc40ff1\crtdll.dll

c:\windows\winsxs\x86_microsoft-windows-
ctl3d32_31bf3856ad364e35_6.0.6000.16386_none_
c7f2246c57358efd\ctl3d32.dll

c:\windows\winsxs\x86_microsoft-windows-d..tshow-
kernelsupport_31bf3856ad364e35_6.0.6000.16386_none_
e5cada609a6133bd\ksuser.dll

c:\windows\winsxs\x86_microsoft-windows-gdi-
painting_31bf3856ad364e35_6.0.6000.16386_none_
7535161f1f2100ed\msimg32.dll

c:\windows\winsxs\x86_microsoft-windows-i..l-keyboard-
00000411_31bf3856ad364e35_6.0.6000.16386_none_
e50b4b87674cc257\KBDJPN.DLL

c:\windows\winsxs\x86_microsoft-windows-i..l-keyboard-
00000412_31bf3856ad364e35_6.0.6000.16386_none_
e57cd2b56703c6de\KBDKOR.DLL

c:\windows\winsxs\x86_microsoft-windows-i..odepage-
57002-57011_31bf3856ad364e35_6.0.6000.16386_
none_3734d6eadb683c21\C_ISCII.DLL

c:\windows\winsxs\x86_microsoft-windows-indeo4-
codecs_31bf3856ad364e35_6.0.6000.16386_none_
39975c8d5a6988b1\ir41_32.ax

c:\windows\winsxs\x86_microsoft-windows-indeo4-
codecs_31bf3856ad364e35_6.0.6000.16386_none_
39975c8d5a6988b1\ir41_qc.dll

c:\windows\winsxs\x86_microsoft-windows-indeo4-
codecs_31bf3856ad364e35_6.0.6000.16386_none_
39975c8d5a6988b1\ir41_qcx.dll

c:\windows\winsxs\x86_microsoft-windows-indeo5-
codecs_31bf3856ad364e35_6.0.6000.16386_none_
22c9c1557410d750\iac25_32.ax

c:\windows\winsxs\x86_microsoft-windows-indeo5-
codecs_31bf3856ad364e35_6.0.6000.16386_none_
22c9c1557410d750\ir50_32.dll

c:\windows\winsxs\x86_microsoft-windows-indeo5-
codecs_31bf3856ad364e35_6.0.6000.16386_none_
22c9c1557410d750\ir50_qc.dll

c:\windows\winsxs\x86_microsoft-windows-indeo5-
codecs_31bf3856ad364e35_6.0.6000.16386_none_
22c9c1557410d750\ir50_qcx.dll

c:\windows\winsxs\x86_microsoft-windows-indeo5-
codecs_31bf3856ad364e35_6.0.6000.16386_none_
22c9c1557410d750\ivfsrc.ax

c:\windows\winsxs\x86_microsoft-windows-m..nents-mdac-
odbc-jet_31bf3856ad364e35_6.0.6000.16386_none_
c91f67973cf2633d\vfpodbc.dll

c:\windows\winsxs\x86_microsoft-windows-m..nents-mdac-
sqlunirl_31bf3856ad364e35_6.0.6000.16386_none_
39dff6607f42ed85\sqlunirl.dll

c:\windows\winsxs\x86_microsoft-windows-m..ponents-
mdac-sqlwid_31bf3856ad364e35_6.0.6000.16386_
none_17440058708f9849\sqlwid.dll

c:\windows\winsxs\x86_microsoft-windows-m..ponents-
mdac-sqlwoa_31bf3856ad364e35_6.0.6000.16386_
none_174a466c7089e370\sqlwoa.dll

c:\windows\winsxs\x86_microsoft-windows-m..s-
components-jetvba_31bf3856ad364e35_6.0.6000.16386_
none_735b8f8d953639a8\expsrv.dll

c:\windows\winsxs\x86_microsoft-windows-m..s-
components-jetvba_31bf3856ad364e35_6.0.6000.16386_
none_735b8f8d953639a8\vbajet32.dll

c:\windows\winsxs\x86_microsoft-windows-mediaplayer-
core_31bf3856ad364e35_6.0.6000.16386_none_
09330123522ea8c1\dxmasf.dll

c:\windows\winsxs\x86_microsoft-windows-mediaplayer-
core_31bf3856ad364e35_6.0.6000.16386_none_
09330123522ea8c1\msdxm.ocx

c:\windows\winsxs\x86_microsoft-windows-
mfc40u_31bf3856ad364e35_6.0.6000.16386_none_
f0dc500958a528b5\mfc40u.dll

23

An Analysis of Address Space Layout Randomization on Windows Vista

c:\windows\winsxs\x86_microsoft-windows-mfc40_
31bf3856ad364e35_6.0.6000.16386_none_
57c82c1ae4dbe668\mfc40.dll

c:\windows\winsxs\x86_microsoft-windows-msvbvm60_
31bf3856ad364e35_6.0.6000.16386_none_
c04d02d754cecca9\msvbvm60.dll

c:\windows\winsxs\x86_microsoft-windows-msvcrt20_
31bf3856ad364e35_6.0.6000.16386_none_
ebed1a7373e6e8e7\msvcrt20.dll

c:\windows\winsxs\x86_microsoft-windows-panmap_
31bf3856ad364e35_6.0.6000.16386_none_
67259240223a18cd\panmap.dll

c:\windows\winsxs\x86_microsoft-windows-pshed_
31bf3856ad364e35_6.0.6000.16386_none_
59bc215430297e40\PSHED.DLL

c:\windows\winsxs\x86_microsoft-windows-setupcl_
31bf3856ad364e35_6.0.6000.16386_none_
567843d7ee5cdd00\setupcl.exe

c:\windows\winsxs\x86_microsoft-windows-sfc_
31bf3856ad364e35_6.0.6000.16386_none_
a4ff01505f4694a4\sfc.dll

c:\windows\winsxs\x86_microsoft-windows-shunimpl_
31bf3856ad364e35_6.0.6000.16386_none_
535fb43f376a866c\shunimpl.dll

c:\windows\winsxs\x86_microsoft-windows-vcm-core-
codecs_31bf3856ad364e35_6.0.6000.16386_none_
6a6bff15db84b924\ir32_32.dll

c:\windows\winsxs\x86_microsoft.windows.i..utomation.
proxystub_6595b64144ccf1df_1.0.6000.16386_none_
b80a29519535473c\sxsoaps.dll

c:\windows\winsxs\x86_netfx-sbs_diasymreader_dll_
31bf3856ad364e35_6.0.6000.16386_none_
a4786bd9e234ccdf\sbs_diasymreader.dll

c:\windows\winsxs\x86_netfx-sbs_iehost_dll_
31bf3856ad364e35_6.0.6000.16386_none_
158168a6457f1679\sbs_iehost.dll

c:\windows\winsxs\x86_netfx-
sbs_microsoft_jscript_dll_31bf3856ad364e35_6.0.6000.163
86_none_faa03a14948da139\sbs_microsoft.jscript.dll

c:\windows\winsxs\x86_netfx-sbs_mscordbi_dll_
31bf3856ad364e35_6.0.6000.16386_none_
60f937e93a64acb2\sbs_mscordbi.dll

c:\windows\winsxs\x86_netfx-sbs_mscorrc_dll_
31bf3856ad364e35_6.0.6000.16386_none_
9f231a637063fa04\sbs_mscorrc.dll

c:\windows\winsxs\x86_netfx-sbs_mscorsec_dll_
31bf3856ad364e35_6.0.6000.16386_none_
e3c6ee04df465dd4\sbs_mscorsec.dll

c:\windows\winsxs\x86_netfx-sbs_ms_vsa_vb_codedomproc_
31bf3856ad364e35_6.0.6000.16386_none_
f5727b5699105db2\sbs_microsoft.vsa.vb.
codedomprocessor.dll

c:\windows\winsxs\x86_netfx-sbs_sys_config_install_dll_
31bf3856ad364e35_6.0.6000.16386_none_
bd13919a387c95c9\sbs_system.configuration.install.dll

c:\windows\winsxs\x86_netfx-sbs_sys_data_dll_
31bf3856ad364e35_6.0.6000.16386_none_
fc52ff10efdba1d1\sbs_system.data.dll

c:\windows\winsxs\x86_netfx-sbs_sys_enterprisesvc_dll_
31bf3856ad364e35_6.0.6000.16386_none_
5ef2978f28e693be\sbs_system.enterpriseservices.dll

c:\windows\winsxs\x86_netfx-sbs_vsavb7rt_dll_
31bf3856ad364e35_6.0.6000.16386_none_
9178a41770a55dbc\sbs_VsaVb7rt.dll

c:\windows\winsxs\x86_netfx-sbs_wminet_utils_dll_
31bf3856ad364e35_6.0.6000.16386_none_
fe642fbd88d269cd\sbs_wminet_utils.dll

24

About Symantec

Symantec is a global leader in

infrastructure software, enabling

businesses and consumers to have

confidence in a connected world.

The company helps customers

protect their infrastructure,

information, and interactions

by delivering software and services

that address risks to security,

availability, compliance, and

performance. Headquartered in

Cupertino, Calif., Symantec has

operations in 40 countries.

More information is available at

www.symantec.com.

For specific country offices and

contact numbers, please visit

our Web site. For product

information in the U.S., call

toll-free 1 (800) 745 6054.

Symantec Corporation

World Headquarters

20330 Stevens Creek Boulevard

Cupertino, CA 95014 USA

+1 (408) 517 8000

1 (800) 721 3934

www.symantec.com

Copyright © 2007 Symantec Corporation. All rights
reserved. Symantec and the Symantec Logo are
trademarks or registered trademarks of Symantec
Corporation or its affiliates in the U.S. and other
countries. Microsoft, Visual Studio, Windows, and
Windows Vista are either registered trademarks or
trademarks of Microsoft Corporation in the United States
and/or other countries. Other names may be trademarks
of their respective owners. This document is provided for
informational purposes only. All warranties relating to
the information in this document, either express or
implied, are disclaimed to the maximum extent allowed
by law. The information in this document is subject to
change without notice. Printed in the U.S.A.
03/07 12066477

